

Synthesis of Isoindolobenzazepine Alkaloids Based on Radical Reactions or Pd(0)-Catalyzed Reactions

Yu Onozaki, Nobuhito Kurono, † Hisanori Senboku, † Masao Tokuda, and Kazuhiko Orito*

Laboratory of Organic Synthesis, Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan. † Present address: Division of Chemical Process Engineering.

orito@eng.hokudai.ac.jp

Received February 11, 2009

Methods for synthesis of a ring system characteristic of isoindolobenzazepine alkaloids were studied. Synthesis of lennoxamine and a formal synthesis of chelenine were accomplished in a short route via radical or Pd(0)-catalyzed cyclization as the key step. An altenative approach based on a radical migration of a cyano group or Pd(0)-catalyzed carbonylation was also developed for both alkaloids.

Introduction

Lennoxamine (1) and chilenine (2)¹ occur together with some isoquinoline alkaloids in nature.¹ The ring system, isoindolo[1,2-b][3]benzazepine, has been completed by cyclization that forms a C-C or C-N bond at a, 2 b, 3 c, 4 d, 5 e, 6 or

f⁷ at the final stage of the synthesis. Conversion of dehydrolennoxamine (3) into chilenine^{3d} and lennoxamine^{2e,3g} has been achieved (Scheme 1). We were interested in the synthetic routes via a ring-closure at e, f, or g, which leads to the isoindolinone ring formation, and examined the validity of the methodologies based on Pd-catalyzed cyclizations

(4) For c-bond, see: (a) Moniot, J. L.; Hindenlang, D. M.; Shamma, M. J. Org. Chem. 1979, 44, 4347–4351. (b) Dorn, C. R.; Koszyk, F. J.; Lenz, G. R. J. Org. Chem. 1984, 49, 2642–2644. (c) Chiefari, J.; Janowski, W.; Prager, R. Tetrahedron Lett. 1986, 27, 6119–6122. (d) Rodríguez, G.; Castedo, L.; Domínguez, D.; Saá, C. Tetrahedron Lett. 1998, 39, 6551–6554. (e) Kessar, S. V.; Singh, T.; Vohra, R. Indian J. Chem. 1991, 30B, 299–231. (f) Reference 2c.

(6) For e-bond, see: (a) Yasuda, S., Sugimoto, Y.; Mukai, C.; Hanaoka, M. Heterocycles 1990, 30, 335–337. (b) Fuchs, J. R.; Funk, R. L. Org. Lett. 2001, 3, 3923–2925. (c) Taniguchi, T.; Iwasaki, K.; Uchiyama, M.; Tamura, O.; Ishibashi, H. Org. Lett. 2005, 7, 4389–4390. (d) Honda, T.; Sakamaki, Y. Tetrahedron Lett. 2005, 46, 6823–6825.

(7) For f-bond, see. (a) Teitel, S.; Klötzer, W.; Borgese, J.; Brossi, A. Can. J. Chem. 1972, 50, 2022–2024. (b) Moody, C. J.; Warrellow, G. J. Tetrahedron Lett. 1987, 28, 6089–6092. Moody, C. J.; Warrellow, G. J. J. Chem. Soc., Perkin Trans. 1 1990, 2929–2936

^{(1) (}a) Shamma, M. *The Alkaloids*; Academic Press: New York, 1972; p 408. (b) Shamma, M.; Moniot, J. L. *Isoquinoline Alkaloids Research 1972–1977*; Plenum Press: New York, 1978; p 300. (c) Fajardo, V.; Elango, V.; Cassels, B. K.; Shamma, M. *Tetrahedron Lett.* 1982, 23, 39–42. (d) Valencia, E.; Weiss, I.; Firdous, S.; Freyer, A. J.; Shamma, M.; Urzua, A.; Fajardo, V. *Tetrahedron* 1984, 40, 3957–3962. (e) Valencia, E.; Freyer, A.; Shamma, M.; Fajardo, V. *Tetrahedron Lett.* 1984, 25, 599–602.

ron Lett. 1984, 25, 599-602.

(2) For a-bond, see: (a) Bernhard, H. O.; Snieckus, V. Tetrahedron Lett. 1971, 51, 4867-4870. (b) Ishibashi, H.; Kawanami, H.; Iriyama, H.; Ikeda, M. Tetrahedron Lett. 1995, 36, 6733-6734. (c) Rodriguez, G.; Cid, M. M.; Saá, C.; Castedo, L.; Domínguez, D. J. Org. Chem. 1996, 61, 2780-2782. (d) Ishibashi, H.; Kawanami, H.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1 1997, 817-821. (e) Koseki, Y.; Kusano, S.; Sakata, H.; Nagasaka, T. Tetrahedron Lett. 1999, 40, 2169-2172. (f) Kim, G.; Kim, J. H.; Kim, W.-i;; Kim, Y. Tetrahedron Lett. 2003, 44, 8207-8209.

⁽³⁾ For b-bond, see: (a) Ruchirawat, S.; Lertwanawatana, W.; Thianpatanagul, S.; Cashaw, J. L.; Davis, V. E. Tetrahedron Lett. 1984, 25, 3485–3488. (b) Mazzocchi, P. H.; King, C. R.; Ammon, H. L. Tetrahedron Lett. 1987, 28, 2473–2476. (c) Kessar, S. V.; Singh, T.; Vohra, R. Tetrahedron Lett. 1987, 28, 5323–5326. (d) Fang, F. G.; Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 2747–2750. (e) Daich, A.; Marchalin, S.; Pigeon, P.; Decroix, B. Tetrahedron Lett. 1998, 39, 9187–9190. (f) Kessar, S. V.; Singh, T.; Vohra, R. Indian J. Chem. 1991, 30B, 999–1005. (g) Ruchirawat, S.; Sahakitpichan, P. Tetrahedron Lett. 2000, 41, 8007–8010. (h) Padwa, A.; Beall, L. S.; Eidell, C. K.; Worsenvroft, K. J. J. Org. Chem. 2001, 66, 2414–2421. (i) Yoda, H.; Nakamura, A.; Koketsu, T.; Takabe, K. Tetrahedron Lett. 2002, 43, 4667–4669. (j) Sahakitpichan, P.; Ruchirawat, S. Tetrahedron 2004, 60, 4169–4172. (k) Comins, D. L.; Schilling, S.; Zhang, Y. Org. Lett. 2005, 7, 95–98.

^{231. (}f) Reference ^{2c}.

(5) For d-bond, see: (a) Barili, P. L.; Fiashi, R.; Napolitano, E.; Pistelli, L.; Scartoni, V.; Marsili, A. *J. Chem. Soc., Perkin Trans. I* 1981, 1654–1658. (b) Koseki, Y.; Nagasaka, T. *Chem. Pharm. Bull.* 1995, 43, 1604–1606. (c) Napolitano, E.; Spinelli, G.; Fiaschi, R.; Marsili, A. *J. Chem. Soc., Perkin Trans. I* 1986, 785–787. (d) Koseki, Y.; Kusano, S.; Sakata, H.; Sato, H.; Nagasaka, T. *Tetrahedron Lett.* 1999, 40, 2169–2172. (e) Couture, A.; Deniau, E.; Grandclaudon, P.; Hoarau, C. *Tetrahedron* 2000, 56, 1491–1499. (f) Koseki, Y.; Katsura, S.; Kusano, S.; Sakata, H.; Sato, H.; Monzene, Y.; Nagasaka, T. *Heterocycles* 2003, 59, 527–540. (g) Couty, S.; Meyer, C.; Cossy, J. *Tetrahedron Lett.* 2006, 47, 767–769. (h) Couty, S.; Liegault, B.; Meyer, C.; Cossy, J. *Tetrahedron* 2006, 62, 3882–3895.

Onozaki et al. IOC Article

SCHEME 1. Isoindolobenzazepine Alkaloids

involving Heck reaction⁸ or Mori–Ban carbonylation, ^{9,10} or aryl radical reactions¹¹ using 3-benzazepines with a haloaryl group as the substrates.

Results and Discussion

Preparation and reactions of 3-benzazepine intermediates **8** and **10** are first examined on the basis of the reported method. ¹² 3-Benzazepin-2-one **6a** was prepared via *primary*-amino acid **5a** from **4a** in a low yield of 30% but was smoothly reduced with LiAlH₄ to tetrahydro-3*H*-3-benzazepine **7a** in good yield. Introduction of a *p*-methoxybenzyl group on the nitrogen atom improved the yield for the intramolecular condensation (**5b** \rightarrow **6b**) to 87%, although reaction steps for the benzylation and debenzylation were required to give **7a** (Scheme 2).

As shown in Scheme 3, benzapine 7a was then treated with 6-bromo-2,3-dimethoxybenzoyl chloride^{2b} to give 3-benzoyl-

(9) (a) Mori, M.; Chiba, K.; Ban, Y. J. Org. Chem. **1978**, 43, 1684–1687. (b) Mori, M.; Chiba, K.; Inotsume, N.; Ban, M. Heterocycles **1979**, 12, 921–924.

(11) For reviews on aryl radical cyclization, see: (a) Ikeda, M.; Sato, T.; Ishibashi, H. *Rev. Heteroatom Chem.* **1998**, *18*, 169–198. (b) Banik, B. K. *Curr. Org. Chem.* **1999**, *3*, 469–496. (c) Murphy, J. A. *Pure Appl. Chem.* **2000**, 72, 1327–1334. (d) Ishibasi, H. *Chem. Rec.* **2006**, 6, 23–31. (e) For recent references, see: Zhou, A.; Niogu, M. N.; Pittman, C. U. Jr. *Tetrahedron* **2006**, 62, 4093–4102.

(12) (a) Pecherer, B.; Sunbury, R. C.; Brossi, A. *J. Heterocycl. Chem.* **1972**, *9*, 609–616. (b) Orito, K.; Kaga, H.; Itoh, M.; de Silva, S. O.; Manske, R. H.; Rodrigo, R. *J. Heterocycl. Chem.* **1980**, 417–423.

(13) For formation of 1-oxoisoindolines by a 1,5-hydrogen atom transfer by aryl radicals generated from *o*-halobenzamides followed by cyclization of the resulting α-amidoyl radical, see: (a) Snieckus, V.; Cuevas, J.-C.; Sloan, C. P.; Liu, H.; Curran, D. P. *J. Am. Chem. Soc.* **1990**, *112*, 896–898. (b) Curran, D. P.; Liu, H. *J. Chem. Soc.*, *Perkin Trans. 1* **1994**, 1377–1393. (c) Beckwith, A. L. J.; Storey, J. M. D. *J. Chem. Soc.*, *Chem. Commun.* **1995**, 977–978. (d) Ikeda, M.; Kugo, Y.; Sato, T. *J. Chem. Soc.*, *Perkin Trans. 1* **1996**, 1819–1824.

SCHEME 2. Preparation of Tetrahydro-3*H*-3-benzazepine 7a

3*H*-3-benzazepine **8** in 95% yield. A radical cyclization via a 1,5-hydrogen atom migration ¹³ followed by an insertion of the generated α-acylamino radical ^{6c} to an internal phenyl group for the conversion of **8** to lennoxamine **1** [**8** \rightarrow **i** \rightarrow **ii** \rightarrow **1**] was unsuccessful, and only debrominated reactant **9** was formed in 94% yield. Attempts at conversion of **8** into its dehydroderivative **10** by dehydrogenation with DDQ or Pd–C or similar functionalization at C-1 by other methods, including NBS/(PhCOO)₂ or $h\nu$, or CrO₃ oxidation were unsuccessful.

Another route to dihydro-3H-3-benzazepine 10 was examined. N-Alkylation of phenethylamine 11¹⁴ with BrCH₂-(OMe)₂ (K₂CO₃, in DMF at 80 °C) produced acetal 12 almost quantitatively, as shown in Scheme 4. Successive Nbenzoylation with 6-bromo-2,3-dimethoxybenzoyl chlori de^{2b} (Py in C_6H_6 , rt) gave benzamide 13 (61%). An attempt to induce cyclization of 13 by a method using AcCl–ZnCl₂^{5c} resulted in recovery of the corresponding aldehyde. Courture's conditions with H_2SO_4 -AcOH (5:3 v/v)^{5e} caused decomposition of the substrate to give a complex mixture. The effect of reduction in the amount of H₂SO₄ was attempted. The use of a 1:3 v/v H₂SO₄-AcOH solution yielded the desired 10 in 45% yield, together with a significant amount of the aldehyde. Addition of MgSO₄, Ac₂O, or MS did not improve the reaction, but the addition of a small amount of MeOH (half volume of H2SO4), which was expected to reproduce the acetal group, markedly improved the low cyclization efficiency to 82% yield of 10 in two steps. In addition, treatment of acetal 12 with H₂SO₄-AcOH (1:4 v/v) at 40 °C produced dihydroazepine **14** in 77% yield, but its N-acylation with 6-bromo-2,3-dimethoxybenzoyl chloride failed to give 10, and a complex mixture was obtained.

⁽⁸⁾ For reviews on the Pd-catalyzed Heck reaction, see: (a) Beletskaya, I. P.; Cheprakov, A. V. *Chem. Rev.* **2000**, *100*, 3009–3066. (b) Whitcombe, N. J.; Hii, K. K. (M.); Gibson, S. E. *Tetrahedron* **2001**, *57*, 7440–7476. (c) Littke, A. F.; Fu, G. C. *Angew. Chem., Int. Ed.* **2002**, *41*, 4176–4211. (d) Dyker, G. *Handbook of Organopalladium Chemistry for Organic Synthesis*; Wiley: New Yori, 2002; Vol. 1, pp 1255–1282. (e) Dounay, A. B.; Overman, L. E. *Chem. Rev.* **2003**, *103*, 2945–2963. (f) For recent references, see:Berthiol, F.; Doucet, H.; Santelli, M. *Tetrahedron Lett.* **2003**, *44*, 1221–1225.

^{(10) (}a) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation, Direct Synthesis of Carbonyl Compound; Plenum Press: New York, 1991; pp 191–204. (b) Tsuji, J. Palladium Reagents and Catalysts, Innovation in Organic Synthesis; John Willey & Sons: Chichester, U.K., 1995; pp 188–209. (c) Tkatchenko, I. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, UK, 1982; Vol. 8, pp 101–223.

⁽¹⁴⁾ Dallacker, F.; Bernabei, D.; Katzke, R.; Benders, P.-H. Chem. Ber. 1971, 104, 2517–2525.

IOC Article
Onozaki et al.

SCHEME 3. Attempts at Conversion of 8 to Lennoxamine (1)

To examine the e-bond formation, radical cyclization of dihydro-3*H*-3-benzazepine **10** to lennoxamine **1** was examined. Funk has already reported the conversion affording **1** in 58% yield under standard conditions using a catalytic amount of AIBN (0.15 mol equiv), ^{6b} and a radical cyclization of *o*-bromobenzylamine derivative was also reported by Hanaoka. ^{6a} The use of excess AIBN (3.0 mol equiv) together with Bu₃SnH (1.5 mol equiv) in boiling benzene for 8 h produced **1** in 73% yield together with the debrominated reactant (**15**) (24%). The use of a smaller amount of AIBN (1 mol equiv) resulted in the formation of a larger amount of **15** (>30%). An alternative procedure utilizing AIBN (4 mol equiv) and AllylSnBu₃ (4 mol equiv) resulted in complete suppression of the debromination, but the cyclization proceeded slowly to give a 1:1 mixture of the unchanged reactant **10** and **1** even after 4 days.

On the other hand, Heck cyclization 15a of **10** with Pd- $(OAc)_2$ (20 mol %) and PPh₃ (40 mol %) in the presence of K_2CO_3 (10 mol equiv) heated in boiling toluene for 24 h gave dehydrolennoxamine (3) in 94% isolated yield, as shown in entry 1 (Table 1). Tertiary amine (Et₃N) used instead of K_2CO_3 was not effective at all (entry 2). 16 The use of Bu₄NCl (2 mol equiv) 17 instead of PPh₃ resulted in exclusive Heck

SCHEME 4. Preparation of 10 and Synthesis of 1 and Dehydrolennoxamine (3)

cyclization via trans-elimination of HPdBr^{15b-g} to give 3 in DMF (entry 3) or better in toluene (92% isolated yield) (entry 4 in Table 1). In view of the previous conversion of 3 into lennoxamine (1)^{2e,3g} and chilenine (2),^{3d} this constitutes a formal synthesis of these alkaloids, providing a new example for Heck cyclization versus radical cyclization.¹⁸

The previously reported one-pot method with EtONa in EtOH affords 1-cyano-2-phenyl-3-benzazepines in low yield of about 30%. ¹⁹ Therefore, according to the aforementioned procedure for the preparation of **4b**, trifluoroacetamide **4a** was first treated with bromobenzaldehyde **16a**²⁰ and K_2CO_3 in MeOH–H₂O (1:1) in the presence of 3 Å molecular sieves

^{(15) (}a) Ikeda, M.; El Bialy, S. A. A.; Yakura, T. Heterocycles 1999, 51, 1957–1970. (b) Grigg, R.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron 1990, 46, 4003–4018. (c) Comins, D. L.; Joseph, S. P.; Zhang, Y. Tetrahedron Lett. 1996, 37, 793–796. (d) Garcia, A.; Rodriguez, D.; Castedo, L.; Saá, C.; Domíngues, D. Tetrahedron Lett. 2001, 42, 1903–1905. (e) Lauthens, M.; Fang, Y.-Q. Org. Lett. 2003, 5, 679–3682. (f) Ackermann, A.; Kaspar, L. T.; Gschrei, C. J. Chem. Commun. 2004, 2824–2825. (g) Wada, Y.; Nishida, N.; Kurono, N.; Ohkuma, T.; Orito, K. Eur. J. Org. Chem. 2007, 4320–4327.

^{(16) (}a) Plevyak, J. E.; Dickerson, J. K.; Heck, R. F. *J. Org. Chem.* **1979**, 44, 4078–4080. (b) Andersson, C.-M.; Hallberg, A. *J. Org. Chem.* **1989**, 54, 1502–1505.

^{(17) (}a) Larock, R. C.; Leung, W.-Y.; Stolz-Dunn, S. *Tetrahedron Lett.* **1989**, *30*, 6629–6632. (b) Amatore, C.; Azzabi, M.; Jutand, A. W. *J. Am. Chem. Soc.* **1991**, *113*, 8375–8384. (c) Jeffery, T. *Tetrahedron* **1996**, *52*, 10113–10130.

⁽¹⁸⁾ For Heck vs. radical cyclizations, see: (a) Sundberg, R. J.; Cherney, R. J. J. Org. Chem. 1990, 55, 6028–6037. (b) Ishibashi, H.; Ito, K.; Tabuchi, M.; Ikeda, M. Heterocycles 1991, 32, 1279–1282. (c) Kraus, G. A.; Kim, H. Synth. Commun. 1993, 23, 55–64. (d) Mohanakrishnan, A. K.; Srinivasan, P. C. Tetrahedron Lett. 1996, 37, 2659–2662. (e) Cossy, J.; Peglion, J.-L.; Dpardo, D. G. Tetrahedron Lett. 1998, 39, 2965–2968. (f) Frey, D. A.; Duan, C.; Ghiviriga, I.; Hudlicky, T. Collect. Czech. Chem. Commun. 2000, 65, 561–569. (g) Denieul, M.-P.; Laursen, B.; Hhhazell, R.; Skrydstrup, T. J. Org. Chem. 2000, 65, 6052–6060. (h) Kundig, P.; Ratni, H.; Crousse, B.; Bernardinelli, G. J. Org. Chem. 2001, 66, 1852–1860.

⁽¹⁹⁾ Orito, K.; Suginome, H. Heterocycles 1989, 29, 403–409.
(20) Sinhababu, A. K.; Borchardt, R. T. J. Org. Chem. 1983, 48, 2356–

4a

1) K₂CO₃

TABLE 1. Heck Cyclization of Dihydro-3*H*-3-benzazepine 10

entry	solvent	catalyst (mol %)/ligand (mol %)	base (mol equiv)	additive (mol equiv)	10:3	yield of 3 (%)
1	toluene ^a	Pd(OAc) ₂ (20)/PPh ₃ (40)	K ₂ CO ₃ (10)		0:100	94
2	toluene ^a	$Pd(OAc)_2(20)/PPh_3(40)$	$Et_3N(3)$		100:0	
3	DMF^b	$Pd(OAc)_2(20)$	$K_2CO_3(10)$	$Bu_4NCl(2)$	15:85	
4	toluene ^a	$Pd(OAc)_2(20)$	$K_2CO_3(10)$	$Bu_4NCl(2)$	0:100	92
^a Refl	uxed under argo	n for 24 h. ^b Heated at 90 °C under argor	n for 24 h.	. , ,		

SCHEME 5. Synthesis of 3 via Pd-Catalyzed Carbonylation

at rt for 12 h, to afford imine **18a** (97%), as shown in Scheme 5. An attempt to prepare iodobenzaldehyde **16b** by direct treatment of bromide **16a** with CuI/KI/TMEDA,²¹ LDA/I₂, or NIS failed. A halogen exchange on ethylene acetal **17** (99%) with BuLi and NIS,²² followed by deacetalization with 2 N HCl solution, produced iodobenzaldehyde

16b (73%), which was similarly subjected to condensation with **4a** to give imine **18b** (95%).

A combination of EtONa (1.1 equiv) with an ethanolic solvent such as EtOH, THF—EtOH (entries 1 and 2 in Table 2), or dioxane—EtOH (entry 3) did not give good results for the conversion of imine **18a** to 3-benzazepine **19a**. The use of a 3-fold greater amount of the base resulted in the better formation of the desired azepine **19a** (entry 4). When a more basic alkoxide, *t*-BuONa, was used in THF—*t*-BuOH, the cyclization proceeded smoothly, and 80% of **19a** was formed after 3 h (entry 5). It was isolated almost quantitatively in the best isolated yield of 95% after 6 h (entry 6). Thus, **18b** was also heated with *t*-BuONa (1.1 equiv) in THF—*t*-BuOH (2:1) for 6 h to afford benzazepine **19b** (85% in two steps).

As shown in Scheme 5, Pd(0)-catalyzed carbonylation of iodobenzazepine 19b [CO (1 atm), Pd(OAc)₂ (20 mol %), PPh₃ (40 mol %), K₂CO₃ (2 mol equiv)] in boiling toluene (12 h) produced cyanolennoxamine 20a in 97% yield. Under the same conditions, bromobenzazepine 19a failed to produce 20a, but its 4',5'-dimethoxy derivative 19c underwent carbonylation to give 20b (42%), which is a regioisomer to 20a. To generate a vicinal ketol system such as that in 2, 20a was subjected to oxidative decyanation with Bu₄NI (10 equiv) by treatment in a refluxing 50% NaOH-CHCl₃ solution under oxygen for 2 days.²³ However, neither 2 nor other oxygenated compounds were formed, and unsaturated cyanolennoxamine 21a was instead obtained in 75% yield. The use of Bu₄NBr in place of Bu₄NI resulted in complete recovery of **20a**. Further attempts at dioxygenation of an unsaturated system in 21a by using a dualoxygenation reagent, such as dimethyldioxirane, 3d,24 OsO₄, 3d,25 H₂O₂, 26 *t*-BuOOH, 26 or KMnO₄, 27 have so far been unsuccessful. For instance, treatment of 21a with H₂O₂ in the presence of Bu₄NF²⁶ afforded amide **21b** in 48% yield. The cyano group of **20a** was quantitatively removed in a boiling t-BuOH-THF (3:2) solution containing t-BuONa (1.5 equiv), and the aforementioned synthetic precursor 3 of lennoxamine (1) or chilenine (2) was obtained. Execution of this two-step procedure on 19b in one pot resulted in the formation of 3 in 96% yield.

 ⁽²¹⁾ Suzuki, H.; Kondo, A.; Ogawa, T. Chem. Lett. 1995, 411–412.
 (22) Gribble, G. W.; Saulnier, M. G. Tetrahedron Lett. 1980, 21, 4137–4140.

^{(23) (}a) Donetti, A.; Boniardi, O.; Ezhaya, A. Synthesis 1980, 1009–1011.
(b) Hatzigrigoriou, E.; Wartski, L. Bull. Soc. Chem. Fr. 1983, II-313–II-316.
(24) (a) Murray, R. W.; Rajadhyaksha, S. N.; Mohan, L. J. Org. Chem. 1989, 54, 5783–5788.
(b) Murray, R. W. Chem. Rev. 1989, 89, 1187–1201.

⁽²⁵⁾ Schröder, M. Chem. Rev. 1980, 80, 187–213.

⁽²⁶⁾ Miyashita, M.; Suzuki, T.; Yoshikoshi, A. Chem. Lett. 1987, 285-288.

⁽²⁷⁾ Ogino, T.; Mochizuki, K. Chem. Lett. 1979, 443-445.

⁽²⁸⁾ For radical 1,4-migration of a cyano group, see: (a) Kalvoda, J. Helv. Chim. Acta, 1968, 51, 267–277; Kalvoda, J. Chem. Commun. 1970, 1002–1003. (b) Watt, D. S. J. Am. Chem. Soc. 1976, 98, 271–273. (c) Roberts, B. P.; Winter, J. N. J. Chem. Soc., Perkin II 1979, 1353–1361. (d) Beckwith, A. L. J.; O'Shea, D. M.; Gerba, S.; Westwood, S. W. J. Chem. Soc., Chem. Commun. 1987, 666–667. (e) Beckwith, A. L. J.; O'Shea, D. M.; Westwood, S. W. J. Am. Chem. Soc. 1988, 110, 2565–2575. (f) Curran, D. P.; Seong, C. M. J. Am. Chem. Soc. 1990, 112, 9401–9403. (g) Curran, D. P.; Seong, C. M. Tetrahedron 1992, 48, 2175–2190. (h) Callier, A.-C.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 1994, 35, 6109–6112. (i) Cossy, J.; Poitevin, C.; Pardo, D. G.; Peeglion, J. L. Synthesis 1995, 1368–1370. (j) Rychnovsky, S. D.; Swenson, S. S. Tetrahedron 1997, 53, 16489–16502. (k) Crich, D.; Bowers, A. A. J. Org. Chem. 2006, 71, 3452–3463.

JOC Article

TABLE 2. Cyclization of Imine 18a to 3-Benzazepine 19a^a

entry	base (equiv)	solvents	temp, °C	time, h	18a:19a ^b	yield of 19a, %
1	EtONa (1.1)	THF/EtOH (2:1)	reflux	3	4:1	
2	EtONa (1.1)	THF/EtOH (2:1)	50	20	a complex mixture	
3	EtONa (1.1)	dioxane/EtOH (2:1)	50	3	1: 1	
4	EtONa (3.0)	THF/EtOH (2:1)	50	3	1:2	
5	^t BuONa (1.1)	$THF/^{t}BuOH(2:1)$	50	3	1:4	
6	^t BuONa (1.1)	$THF/^{t}BuOH(2:1)$	50	6	0:10	95
^a React	ions were carried out un	der argon. ^b Determined by ¹ H	I NMR analysis.			

SCHEME 6. Radical 1,4-Cyano Migration of 3-Benzazepines 19 and Synthesis of 1

To obtain 3-benzazepine **22a**, a 1,4-cyano migration via a 5-*exo* radical cyclization onto the halogenated aryl carbon was examined (Scheme 6).²⁸ When iodide **19b** in a 0.02 M boiling benzene solution was treated with AIBN (1.5 equiv) and Bu₃SnH (2 equiv) for 12 h, only deiodination occurred in 50% conversion to give **24a** (entry 1 in Table 3). Replacement of the solvent with boiling toluene afforded an unsaturated cyano migrated product **23a** over **24a** in a ratio of

2:1 from both iodide 19b and bromide 19a (entries 2 and 4). Reaction in boiling xylene gave a complex mixture (entry 3). Similar treatments of *N*-Me derivatives (19bMe and 19aMe) of 19b and 19a in boiling toluene produced a saturated cyano migration product, 2-(2-cyanophenyl)-3*H*-3-benzazepine 22b and dehalogenated reactant 24b in a 1:1 ratio in a dark brown reaction mixture, respectively (entries 5 and 6). In entries 7 and 8, the amount of the

TABLE 3. Radical 1,4-Cyano Migration of 3-Benzazepines 19^a

entry	substrate	R	X	AIBN/Bu ₃ SnH, mol equiv	concn, M	solvent	NMR mol ratio 19:22:23:24	yield
1 ^b	19b	Н	I	1.5/2.0	0.02	benzene	1:0:0:1	24a (40%)
2^b	19b	Н	I	1.5/2.0	0.02	toluene	0:0:2:1	23a (65%)
3^b	19b	Н	I	1.5/2.0	0.02	xylene	a complex mixture	
4^b	19a	Н	Br	1.5/2.0	0.02	toluene	0:0:2:1	23a (63%)
5^b	19bMe	Me	I	1.5/2.0	0.02	toluene	0:1:0:1	22b (28%)
6^b	19aMe	Me	Br	1.5/2.0	0.02	toluene	0:1:0:1	22b (30%) 24b (27%)
7^c	19a	Н	Br	0.5/2.0	0.02	toluene	0:2:0.1:1	22a $(40\%)^d$
8^c	19a	Н	Br	0.1/2.0	0.02	toluene	0:3:0:1	22a $(51\%)^d$
9^c	19a	Н	Br	0.5/2.0	0.01	toluene	0:4:0.2:1	22a $(57\%)^d$
10^{c}	19a	Н	Br	0.1/2.0	0.01	toluene	1.5:3:0.3:1	22a $(44\%)^d$
11^{b}	19c	H	Br	1.5/2.0	0.02	toluene	0:0:15:1	23c (85%)

^aAll reactions were carried out in an appropriate boiling solvent under Ar. ^bThe reaction was carried out with 0.05 mmol of each substrate in a solvent (2.5 mL). ^cThe reaction was carried out with 1 mmol of **19a**. ^dIsolated as an HBr salt.

SCHEME 7. Radical 1,4-Cyano Migration of 3-Benzazepines 19

radical initiator AIBN in the reaction of bromide 19a was reduced to 0.5 or 0.1 molar equiv, the 0.5 molar equiv giving the desired product 22a together with a small amount of its 1,2-unsaturated derivative 23a and the 0.1 molar equiv giving a greater amount of 22a without forming 23a. The use of 0.5 molar equiv of AIBN in a diluted system (0.01 M toluene solution, entry 9) resulted in more efficient 1,4cyano migration (>80%) to produce 2-(2-cyanophenyl)-3H-3-benzazepine 22a in 57% isolated yield accompanied by its 1,2-unsaturated derivative 23a and debrominated reactant 24a in a ratio of 4:0.2:1 (entry 9). In another diluted system containing 0.1 molar equiv of AIBN (entry 10) some of the reactant remained unchanged. Successive treatment of **22a** with 1 N NaOH solution in boiling isoPrOH (1:5 vol %) for 24 h produced lennoxamine (1) in 70% yield. A one-pot procedure for these conversions gave 1 in a better yield (54%). Thus, the first natural product synthesis through a cyano migration²⁸ was accomplished. In addition, bromide 19c gave an unsaturated cyano migration product 23c, together with a small amount of 24a in a ratio of 15:1, in 85% isolated yield (entry 11) under the same conditions as those in entry 2.

Scheme 7 shows processes for radical cyano migration followed by abstraction of a hydrogen atom. In the radical reaction of 19b, which has an NH group, a greater amount of AIBN causes a hydrogen abstraction at the C_2 position by a generated isobutyronitrile radical after cyano migration to form a double bond in an unsaturated azepine 23a. In contrast, in the case of its N-Me derivatives, 19aMe and **19bMe**, the attack of the isobutyronitrile radical to the C-2 hydrogen is blocked with a barricade of an N-Me group, and an unsaturated azepine depicted as 23b was not formed. The radical at C-1 abstracts a hydrogen atom from Bu₃SnH to give a saturated azepine 22b, as shown in entries 5 and 6. Moreover, the cyano migration proceeded more slowly with a sterically hindered aryl radical generated from the 2'-halo-3',4'-dimethoxyphenyl group in 19a or 19b compared with that from the 2'-halo-4',5'-dimethoxy group in 19c, and the hindered aryl radical tended to abstract a hydrogen atom intermolecularly from Bu₃SnH to give 24a or 24b. This is the reason why 19c gave the cyano migration product (23c) in greater amount. Thus, the desired compound 22a was more efficiently formed in a diluted solution of 19a in order to suppress an intermolecular hydrogen abstraction of the C-2'

Onozaki et al.

aryl radical from Bu_3SnH to **24a** and an intermolecular hydrogen abstraction at C-2 by an isobutyronitrile radical to **23a**.

In summary, methods for synthesis of a ring system characteristic of isoindolobenzazepine alkaloids were studied. Synthesis of lennoxamine and a formal synthesis of chelenine were accomplished in a short route via radical or Pd(0)-catalyzed cyclization as the key step. An alternative access based on a radical migration of a cyano group also led to the synthesis of lennoxamine.

Experimental Section

3-(6-Bromo-2,3-dimethoxybenzoyl)-7,8-(methylenedioxy)-1,2, **4,5-tetrahydro-3**H**-3-benzazepine** (8). To a stirred solution of 7a(442 mg, 2.31 mmol) and pyridine (1.5 mL) in benzene (10 mL) at rt was dropwise added 6-bromo-2,3-dimethoxybenzoyl chloride^{2b,15g} (700 mg, 2.5 mmol) {freshly prepared from 6-bromo-2,3-dimethoxybenzoic acid [prepared by bromination of 2,3-dimethoxybenzoic acid with 1,3-dibromo-5,5-dimethylhydantoin, mp 81–83 °C (benzene–hexane), ¹H NMR δ 3.88 (s, 3H), 3.93 (s, 3H), 6.86 (d, J = 8.6 Hz, 1H), 7.28 (d, J = 8.6 Hz, 1H)] and excess SOCl₂} in benzene (10 mL). The mixture was stirred for 12 h and then washed with aq 2 N HCl (3×25 mL), aq 2 N NaOH (3 \times 25 mL), and water (3 \times 50 mL), then dried (Na₂SO₄). The solvent was evaporated, and the residue was crystallized from benzene -hexane to give 8 (963 mg, 95%), mp 201–203 °C, as dark gray crystals: IR (Nujol) $\nu_{\rm max}$ 1628, 1490 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.83 (dd, J = 6.3, 3.0 Hz, 2H), 2.95 (t, J = 4.6 Hz, 2H), 3.33 (dd, J = 6.3, 4.6 Hz, 2H), 3.87 (s, 3H), 3.88 (s, 3H), 3.70-4.10 (m, 2H), 5.91 (s, 2H), 6.54 (s, 1H), 6.68 (s, 1H), 6.80, 7.26 (AB type, J = 8.6 Hz, each 1H); ¹³C NMR (67.8 MHz, CDCl₃) δ 37.0, 37.3, 44.5, 49.7, 56.0, 61.7, 100.9, 109.2, 11.1, 110.2, 113.6, 128.2, 133.4, 133.7, 134.4, 145.6, 145.8, 152.2, 165.5, 183.7; EI-MS m/z (rel intensity) 435 (M⁺, 31), 433 (M⁺, 32), 354 (68), 243 (100). Anal. Calcd for C₂₀H₂₀BrNO₅: C, 55.31; H, 4.64; Br, 18.40; N, 3.23. Found: C, 55.56; H, 4.79; Br, 18.43; N, 3.15.

Treatment of 8 with Bu₃SnH and AIBN. A stirred solution of 8 (30.4 mg, 0.07 mmol), AIBN (11.5 mg, 0.07 mmol), and Bu₃SnH (40.7 mg, 0.14 mmol) in toluene (2 mL) was heated at reflux for 4 h. The reaction mixture was concentrated. The residue was dissolved in CH₃CN (10 mL), then washed with hexane (3×20 mL). Evaporation of CH₃CN afforded an oil (34 mg), which was subjected to preparative TLC with 3% MeOHCH₂Cl₂. A band with R_f 0.6 afforded 9 as colorless crystals (21 mg, 94%), mp 151–152 °C (Et₂O) (lit. 6c mp 151–152 °C).

Preparation of 3-(6-Bromo-2,3-dimethoxybenzoyl)-7,8-(methylenedioxy)-1,2-dihydro-3*H*-3-benzazepine (10). A mixture of phenethylamine 11 (2.48 g, 15 mmol), bromoacetaldehyde dimethylacetal (2.53 g, 15 mmol), and K₂CO₃ (10.3 g, 75 mmol) in DMF (50 mL) was stirred at 80 °C for 12 h. The mixture was poured into water (80 mL), then extracted with ether (3 × 40 mL). The combined extracts were washed with saturated brine (5 × 50 mL), dried (MgSO₄), and concentrated to give acetal **12** (3.83 g, 99%) as a colorless oil: IR (Nujol) $\nu_{\rm max}$ 3328, 1609, 1502 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.75, 2.85 (each t, J = 5.6 Hz, each 2H), 3.37 (s, 6H), 4.45 (t, J = 5.6 Hz, 1H), 5.92 (s, 2H), 6.64 (dd, J = 7.9, 1.7 Hz, 1H), 6.69 (d, J = 1.7 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H); EI-MS m/z (rel intensity) 253 (M⁺, 7), 190 (15), 149 (55), 118 (100). HRMS calcd for C₁₃H₁₉NO₄ 253.1314, found 253.1316. To a stirred suspension of 12 (128) mg, 0.5 mmol), Et₃N (91 mg, 0.9 mmol), and anhydrous MgSO₄ (100 mg) in CH_2Cl_2 (7 mL) at rt was added dropwise 6-bromo-2,3-dimethoxybenzoyl chloride^{2b,15g} (0.24 g, 0.6 mmol) in CH₂Cl₂ (5 mL). The mixture was stirred for 12 h, and then washed with water $(3\times50 \text{ mL})$ and aq 2 N NaOH $(3\times25 \text{ mL})$ and

dried (Na₂SO₄). The solvent was evaporated to give amide 13 (290 mg, 61%) as a light brown oil. This was dissolved in a mixture of MeOH (0.5 mL) and acetic acid (3 mL) and cooled to 0 °C. After concd H_2SO_4 (1.0 mL) was added dropwise, the mixture was stirred at rt for 24 h and poured slowly into concd NH₄OH (15 mL). The mixture was extracted with CH_2Cl_2 (3×15 mL). The combined extracts were washed with water (3×20 mL), dried (Na₂SO₄), and concentrated to give an oil (281 mg), which was purified by preparative TLC on silica gel developed with 1% MeOHCH₂Cl₂. A main band with R_f 0.6 gave 3-benzazepine **10** (186 mg, 85% in 2 steps) as a colorless oil: IR (Nujol) $\nu_{\rm max}$ 1661, 1636, 1505 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.96-3.13 (m, 2H), 3.62, 4.11 (2:1, each t, J = 5.0, 4.0 Hz, 1H), 3.96 (s, 3H), 3.88 (s, 3H), 4.01-4.36 (m, 1H), 5.40, 5.80 (2:1, each d, J = 10.6, 2:1, 1H), 5.92 (s, 2H), 6.20, 7.42 (2:1, each d, J = 10.6 Hz, 1H), 6.50, 6.61, 6.64, 6.71 (1:2:2:1, each s, 2H), 6.83, 6.85 (2:1. each d, J = 8.9 Hz, 1H), 7.30, 7.36 (2:1, each s, 1H); EI-MS m/z (rel intensity) 433 (M⁺, 29), 431 (M⁺, 30), 243 (100). HRMS calcd for C₂₀H₁₈BrNO₅ 431.0396, found 431.0382.

Preparation of 7,8-Methylenedioxy-4,5-dihydro-3H-3-benzazepine (14) and an Attempt To Obtain Its N-Benzoyl Derivative 10. To a stirred solution of acetal 12 (127 mg, 0.5 mmol) in AcOH (2 mL) was added concd H₂SO₄ (0.5 mL). The mixture was warmed at 40 °C for 15 h, then poured slowly into concd NH₄OH solution (10 mL). The mixture was extracted with CH₂Cl₂ (3×10 mL). The combined extracts were washed with water (3 × 10 mL), dried (Na₂SO₄), and concentrated to give enamine 14 as an oil (73 mg, 77%); IR (Nujol) ν_{max} 3310, 1628, 1502 cm^{-1} ; ¹H NMR (270 MHz, CDCl₃) δ 2.39–2.97 (m, 2H), 3.42-3.47 (m, 1H), 3.91 (br s, 1H), 4.95 (d, J=9.9 Hz, 1H), 5.87(s, 2H), 6.11 (dd, J=9.9, 5.9 Hz, 1H), 6.50 (s, 1H), 6.56 (s, 1H);EI-MS (rel intensity) 189 (M⁺, 100). HRMS calcd for C₂₀H₁₈BrNO₅ 189.0790, found 189.0783. This was dissolved in benzene (2 mL) containing pyridine (0.5 mL) and treated with 6-bromo-2,3-dimethoxybenzoyl chloride^{2b,15g} (137 mg, 0.49 mmol) in benzene (1 mL) at rt for 12 h. The reaction mixture was diluted with Et₂O (15 mL), washed with water (3× 10 mL) and aq 2 N NaOH (3×10 mL), and dried (Na₂SO₄). The solvent was evaporated to give an oil (127 mg), ¹H NMR spectrum of which showed mainly the presence of 6-bromo-2,3-dimethoxybenzoic acid but not the desired amide 10.

Radical Cyclization of 10: Synthesis of Lennoxamine (1). A solution of **10** (30 mg, 0.07 mmol), AIBN (36 mg, 0.21 mmol), and Bu₃SnH (30 mg, 2.3 mmol) in dry benzene (12 mL) under nitrogen was refluxed with stirring for 8 h. The solvent was evaporated. The residue was dissolved in CH₃CN (10 mL) and washed with hexane $(3 \times 20 \text{ mL})$. The CH₃CN layer was separated and concentrated to give an oil (35 mg), which was purified by preparative TLC on silica gel developed with 3% MeOH-CH₂Cl₂. A main band with R_f 0.6 was crystallized from MeOH to give lennoxamine (1) (18 mg, 73%), mp 229-230 °C (lit. le mp 225 °C; lit. 2c mp 223–225 °C; lit. 6c mp 223–226 °C; lit. 3j mp 226–227 °C; lit. 2d mp 226–228 °C; lit. 5f mp 227–228 °C; lit. 5c, 7a mp 228–229 °C; lit. 2d mp 229–230 °C; lit. 5f mp 235– 235.5 °C), as colorless crystals. A band with R_f 0.8 gave the debrominated reactant 15 (6 mg, 24%) as a pale yellow oil: IR (neat) $\nu_{\rm max}$ 2938, 2240, 1659 cm $^{-1}$; 1 H NMR (270 MHz, CDCl₃) δ 2.94–3.03 (m, 2H), 3.70–4.33 (m, 2H), 3.85 (s, 3H), 3.90 and 3.91 (2:1, each s, 3H), 5.36 and 5.75 (2:1, each d, J = 10.6 Hz, 1H), 5.92 (s, 2H), 6.29 and 7.43 (2:1, each d, J = 10.6 Hz, 1H), 6.51, 6.60, 6.64, 6.71 (1:2:2:1, each s, 2H), 6.83-6.88 (m, 1H), 6.98 (dd, J = 8.3, 1.7, 1H), 7.09–7.16 (m, 1H); EI-MS m/z (rel intensity) 353 (M⁺, 1), 91 (31). HRMS calcd for $C_{20}H_{17}NO_5$ 353.1263, found 353.1260.

Heck Cyclization of Benzazepine 10: Synthesis of Dehydrolennoxamine (3). A stirred mixture of benzazepine 10 (15 mg, 0.035 mmol), Pd(OAc)₂ (1.6 mg, 0.007 mmol), PPh₃ (3.7 mg, 0.014 mmol), and

Onozaki et al. JOC Article

 K_2CO_3 (48 mg, 0.35 mmol) in toluene (2 mL) was refluxed under argon for 24 h. The reaction mixture was cooled to rt and filtered through a Celite pad. The filtrate was concentrated. The residue (18 mg) was purified by preparative TLC developed with 3% MeOH–CH₂Cl₂. A main band with R_f 0.3 was crystallized from MeOH to give 3 (12 mg, 94%) as yellow crystals, mp 210–211 °C (lit. ^{3j} mp 208–209 °C; lit. ^{2b} mp 209–211 °C; lit. ^{5f} mp 213–214 °C).

Preparation of 2-Iodo-3,4-dimethoxybenzaldehyde (16b). A mixture of 2-bromo-3,4-dimethoxybenzaldehyde (16a)²⁰ (2.45 g, 10 mmol), ethylene glycol (5.68 mL, 0.1 mol), and concd H₂SO₄ (0.5 mL) in dry benzene (50 mL) was refluxed with a DeanStark water separator under argon for 12 h. After cooling, the mixture was diluted with Et₂O (50 mL), washed with water (3×30 mL), and dried (Na₂SO₄). The solvent was evaporated to give [1,3]dioxolane 17 (2.93 g, > 99%) as a crystalline solid. An analytical sample was prepared by recrystallization from benzenehexane; mp 72-73 °C; IR (Nujol) $\nu_{\rm max}$ 1594, 1495 cm⁻ NMR (270 MHz, CDCl₃) δ 3.85 (s, 3H), 3.88 (s, 3H), 4.03-4.18 (m, 4H), 6.07 (s, 1H), 6.89 (d, J=8.9 Hz, 1H), 7.34 (d, J=8.9 Hz, 1H)1H); EI-MS m/z (rel intensity) 290 (M⁺, 88), 289 [(M + H)⁺, 100], 288 (M⁺, 90), 257 (28), 243 (30), 216 (54). Anal. Calcd for C₁₁H₁₃BrO₄: C, 45.70; H, 4.53; Br, 27.64. Found: C, 45.81; H, 4.58; Br, 27.57. To a stirred solution of this dioxolane (4.34 g, 15 mmol) in dry THF (100 mL) under argon at -78 °C was added dropwise n-BuLi (1.5 M hexane solution, 12 mL). After 20 min, a solution of N-iodosuccinimide (4.39 g, 19.5 mmol) in dry THF (100 mL) was added dropwise. The mixture was stirred at -78 °C for 2 h, and then at rt for 3 h. The resulting mixture was quenched with aq 2 N HCl (10 mL), stirred for 2 h, extracted with CH₂Cl₂ $(3\times30 \text{ mL})$, washed with saturated brine $(3\times30 \text{ mL})$, and dried (Na₂SO₄). The solution was concentrated to dryness. The residue (4.19 g) was subjected to column chromatography on silica gel with CH_2Cl_2 as eluent to give iodide **16b** (3.18 g, 73%) as a crystalline solid. An analytical sample was prepared by recrystallization from EtOH; mp 77–78 °C; IR (Nujol) 1677, 1579 cm $^{-1}$; ¹H NMR (270 MHz, CDCl₃) δ 3.87 (s, 3H), 3.96 (s, 3H), 6.97 (d, $J = 8.6 \text{ Hz}, 1\text{H}, 7.73 \text{ (d, } J = 8.6 \text{ Hz}, 1\text{H}), 10.02 \text{ (s, 1H)}; ^{13}\text{C NMR}$ (67.8 MHz, CDCl₃) δ 56.2, 60.4, 100.3, 111.8, 127.4, 128.9, 148.7, 157.7, 194.9; EI-MS m/z (rel intensity) 292 (M⁺, 100), 277 (11), 248 (3). Anal. Calcd for C₉H₉BrO₃: C, 44.11; H, 3.70; Br, 32.60. Found: C, 44.04; H, 3.85; Br, 32.48.

2-Cyanomethyl-N-(2-bromo-3,4-dimethoxybenzylidene)-4, 5-(methylenedioxy)phenethylamine (18a): General Procedure. A mixture of trifluoroacatamide 4a (600 mg, 2.0 mmol), 2-bromo-3,4-dimethoxybenzaldehyde (16a) (490 mg, 2.0 mmol), K₂CO₃ (1.38 g, 10 mmol), water (5 mL), and MeOH (15 mL) was stirred at rt overnight. MeOH was then evaporated, and the residue was treated with water (20 mL) and CH₂Cl₂ (20 mL). The organic layer was washed with water (3 × 20 mL), dried (Na₂SO₄), and concentrated. The residue was crystallized from EtOH to give imine 18a (836 mg, 97%) as colorless crystals; mp 108–109 °C; IR (Nujol) ν_{max} 1639, 1589 cm⁻¹; ¹H NMR $(270 \text{ MHz}, \text{CDCl}_3) \delta 2.93 \text{ (t, } J = 6.6 \text{ Hz}, \text{ 2H)}, 3.71 \text{ (s, 2H)}, 3.85 \text{ (s, 2H)}$ 3H), 3.91 (s, 3H), 3.85 (t, J=6.9 Hz, 2H), 5.96 (s, 2H), 6.75 (s, 1H), 6.83 (s, 1H), 6.91 (d, J=8.9 Hz, 1H), 7.72 (d, J=8.9 Hz, 1H), 8.42(s, 1H); ¹³C NMR (67.8 MHz, CDCl₃) δ 21.4, 33.9, 56.1, 60.5, 62.4, 101.3, 108.9, 110.2, 111.3, 118.2, 121.1, 121.4, 124.0, 127.5, 131.6, 146.0, 146.5, 147.6, 155.5, 160.6; EIMS m/z (rel intensity) 433 (M⁺, 14), 431 (M⁺, 15), 256 (37), 200 (50), 177 (100). Anal. Calcd for C₂₀H₁₉BrN₂O₄: C, 55.70; H, 4.44; Br, 18.53; N, 6.50. Found: C, 55.63; H, 4.57; Br, 18.28; N, 6.34.

2-Cyanomethyl-*N***-(2-iodo-3,4-dimethoxybenzylidene)-4,5-(methylenedioxy)phenethylamine** (**18b**): colorless crystals (99%), mp 128–130 °C (EtOH); IR (Nujol) $\nu_{\rm max}$ 1634, 1582, 1505 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.94 (t, J = 6.6 Hz, 2H), 3.70 (s, 2H), 3.83 (s, 3H), 3.86 (t, J = 6.9 Hz, 2H), 3.91 (s, 3H), 5.95 (s, 2H), 6.74 (s, 1H), 6.83 (s, 1H), 6.92 (d, J = 8.9 Hz, 1H), 7.67 (d, J = 8.9 Hz, 1H), 8.26 (s, 1H); ¹³C NMR (67.8 MHz, CDCl₃) δ 21.4, 33.9, 56.0,

60.3, 62.1, 99.6, 101.3, 108.9, 110.2, 112.3, 118.2, 121.4, 124.5, 129.9, 131.5, 146.5, 147.6, 148.3, 154.6, 165.0; EI-MS m/z (rel intensity) 478 (M $^+$, 76), 304 (33), 177 (100). Anal. Calcd for $C_{20}H_{19}IN_2O_4$: C, 50.22; H, 4.00; I, 26.53; N, 5.86. Found: C, 50.29; H, 4.03; I, 26.78; N, 5.78.

2-Cyanomethyl-*N***-(2-bromo-4,5-dimethoxybenzylidene)-4, 5-(methylenedioxy)phenethylamine** (**18c):** colorless crystals (93%), mp 109–110 °C (EtOH); IR (Nujol) ν_{max} 2256, 1634, 1598, 1509 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.94 (t, J = 6.9 Hz, 2H), 3.72 (s, 2H), 3.84 (t, J = 6.9 Hz, 2H), 3.91 (s, 3H), 3.94 (s, 3H), 5.96 (s, 2H), 6.76 (s, 1H), 6.84 (s, 1H), 6.98 (s, 1H), 7.48 (s, 1H), 8.37 (s, 1H); ¹³C NMR (67.8 MHz, CDCl₃) δ 21.4, 34.0, 56.1, 56.2, 62.1, 101.3, 109.0, 109.6, 110.3, 115.0, 116.7, 118.1, 121.3, 126.5, 131.5, 146.6, 147.7, 148.7, 151.7, 160.6; EI-MS m/z (rel intensity) 433 (M⁺, 49), 431 (M⁺, 50), 256 (31), 200 (44), 177 (100). Anal. Calcd for C₂₀H₁₉BrN₂O₄: C, 55.70; H, 4.44; Br, 18.53; N, 6.50. Found: C, 55.47; H, 4.59; Br, 18.70; N, 6.42.

2-(2-Bromo-3,4-dimethoxyphenyl)-1-cyano-7,8-(methylenedioxy)-1,2,4,5-tetrahydro-3*H*-3-benzazepine (19a): General Procedure. A solution of 18a (431 mg, 1.0 mmol) and t-BuONa (105 mg, 1.1 mmol) in dry THF (30 mL) and dry t-BuOH (15 mL) was refluxed under argon for 10 h. The cooled reaction mixture was concentrated and dissolved in CH₂Cl₂ (20 mL), washed with water (3 \times 20 mL), dried (Na₂SO₄), and concentrated. The residue was crystallized from EtOH to give 3-benzazepine 19a (409 mg, 95%) as colorless crystals, mp 208-209 °C; IR (Nujol) ν_{max} 1600, 1504 cm⁻¹; ¹H NMR (270 MHz, $CDCl_3$) δ 2.17 (br. s, 1H), 2.73 (dd, J = 15.2, 5.6 Hz, 1H), 2.87 (t, J = 12.2 Hz, 1H, 3.42 - 3.55 (m, 2H), 3.87 (s, 3H), 3.90 (s, 3H),3.94 (d, J=1.0 Hz, 1H), 4.34 (d, J=1.0 Hz, 1H), 5.97, 5.98 (eachd, J = 1.3 Hz, each 1H), 6.68 (s, 1H), 6.70 (s, 1H), 6.96 (d, J = 8.6Hz, 1H), 7.51 (d, J = 8.6 Hz, 1H); ¹³C NMR (67.8 MHz, CDCl₃) δ 37.5, 47.4, 48.9, 56.1, 60.5, 62.5, 101.4, 110.4, 111.1, 111.6, 117.7, 118.5, 122.4, 127.3, 133.5, 136.3, 136.0, 146.4, 147.4, 153.3; EI-MS m/z (rel intensity) 433 (M⁺, 22), 431 (M⁺, 24), 430 (92), 390 (12), 256 (50), 244 (100), 200 (95), 177 (94). Anal. Calcd for C₂₀H₁₉BrN₂O₄: C, 55.70; H, 4.44; Br, 18.53; N, 6.50. Found: C, 55.53; H, 4.31; Br, 18.72; N, 6.36.

1-Cyano-2-(2-iodo-3,4-dimethoxyphenyl)-7,8-(methylenedioxy)-1,2,4,5-tetrahydro-3*H***-3-benzazepine (19b):** colorless crystals (85% in two steps from **4** and **16b** through **18b**), mp 219–223 °C (EtOH); IR (Nujol) $\nu_{\rm max}$ 2236, 1587, 1504 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.13 (br. s, 1H), 2.74 (dd, J= 15.2, 5.6 Hz, 1H), 2.88 (t, J= 12.2 Hz, 1H), 3.48 (m, 2H), 3.85 (s, 3H), 3.89 (s, 3H), 3.91 (s, 1H), 4.24 (s, 1H), 5.97, 5.98 (each s, each 1H), 6.68 (s, 1H), 6.76 (s, 1H), 6.97 (d, J= 8.6 Hz, 1H), 7.51 (d, J= 8.6 Hz, 1H); ¹³C NMR (67.8 MHz, CDCl₃) δ 37.5, 47.4, 48.9, 56.1, 60.3, 67.0, 98.4, 101.4, 110.8, 111.1, 112.6, 117.7, 123.1, 127.3, 136.4, 136.4, 146.0, 147.5, 148.7, 152.4; EI-MS m/z (rel intensity) 478 (M $^+$, 100), 438 (15), 304 (37), 256 (50), 215 (14), 177 (87). Anal. Calcd for C₂₀H₁₉IN₂O₄: C, 50.22; H, 4.00; I, 26.53; N, 5.86. Found: C, 50.18; H, 4.00; I, 26.47; N, 5.77.

2-(2-Bromo-4,5-dimethoxyphenyl)-1-cyano-7,8-(methylenedioxy)-1,2,4,5-tetrahydro-3*H*-**3-benzazepine (19c):** colorless crystals (87% in two steps from **4** and **16c** through **18c)**, mp 213-215 °C (EtOH); IR (Nujol) ν_{max} 1504 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.0–2.2 (br, 1H), 2.75 (dd, J = 15.2, 5.6 Hz, 1H), 2.88 (t, J=12.2 Hz, 1H), 3.42–3.57 (m, 2H), 3.89 (s, 4H), 3.96 (s, 3H), 4.30 (s, 1H), 5.97, 5.98 (each d, J=2.0 Hz, each 1H), 6.67 (s, 1H), 6.69 (s, 1H), 7.04 (s, 1H), 7.39 (s, 1H); EI-MS m/z (relintensity) 433 (M⁺, 17), 431 (M⁺, 20), 430 (76), 390 (11), 256 (42), 244 (40), 200 (32), 177 (100). Anal. Calcd for C₂₀H₁₉Br-N₂O₄: C, 55.70; H, 4.44; Br, 18.53; N, 6.50. Found: C, 55.67; H, 4.48; Br, 18.37; N, 6.41.

Preparation of 13-Cyannolenoxamine (20a): General Procedure. A mixture of iodide **19b** (954 mg, 2.0 mmol), PPh₃ (210 mg, 0.80 mmol), Pd(OAc)₂ (45 mg, 0.20 mmol), and K₂CO₃ (1.93 g,

Onozaki et al.

14 mmol) in toluene (120 mL) was refluxed under CO for 12 h. The precipitates were removed by filtration with a Celite pad, and the filtrate was concentrated. The residue (1.49 g) was chromatographed on silica gel with 3% MeOH–CH₂Cl₂ as eluents to give a crude product. Crystallization from EtOAchexane gave **20a** (730 mg, 97%) as colorless crystals, mp 270–272 °C; IR (Nujol) $\nu_{\rm max}$ 2242, 1693, 1504 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.85 (dd, J = 15.2, 4.3 Hz, 1H), 2.96 (t, J = 12.2 Hz, 1H), 3.34–3.45 (m, 1H), 3.93 (s, 3H), 4.12 (s, 3H), 4.22 (d, J = 2.3 Hz, 1H), 4.53 (d, J = 2.3 Hz, 1H), 4.80 (m, 1H), 6.00, 6.02 (each d, J = 1.3 Hz, each 1H), 6.75 (s, 1H), 6.76 (s, 1H), 7.15, 7.19 (AB type, J = 8.3 Hz, each 1H); EI-MS m/z (relintensity) 378 (M⁺, 100), 338 (28), 205 (51), 192 (72). Anal. Calcd for C₂₁H₁₈N₂O₅: C, 66.66; H, 4.79; N, 7.40. Found: C, 66.52; H, 4.75; N, 7.32.

13-Cyano-10,11-dimethoxy-5,6,12b,13-tetrahydro-8*H*-2,3-(methylenedioxy)isoindolo[1,2-*b*][3]benzazepin-8-one (20b). Bromide 19c (22 mg, 0.05 mmol) on carbonylation under a similar manner for 24 h gave colorless crystals of 20b (8 mg, 42%), mp 276–278 °C (AcOEt—hexane); IR (CHCl₃) $\nu_{\rm max}$ 2242, 1693, 1504 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.87–3.03 (m, 3H), 3.97 (s, 3H), 4.04 (s, 3H), 4.06 (d, J=7.9 Hz, 1H), 4.41 (d, J=7.9 Hz, 1H), 4.73–4.81 (m, 1H), 6.01, 6.03 (each d, J=1.0 Hz, each 1H), 6.75 (s, 1H), 7.30 (s, 1H), 7.33 (s, 1H), 7.49 (s, 1H); EI-MS m/z (rel intensity) 378 (M⁺, 100), 352 (31), 338 (23), 205 (98), 192 (87). Anal. Calcd for C₂₁H₁₈N₂O₅: C, 66.66; H, 4.79; N, 7.40. Found: C, 66.45; H, 4.76; N, 7.41.

Synthesis of 3 by Dehydrocyanation of 20a. A mixture of 20a (38 mg, 0.1 mmol) and t-BuONa (15 mg, 0.15 mmol) in t-BuOH (3 mL) and THF (2 mL) was refluxed under Ar for 1 h. The cooled mixture was concentrated, then treated with CH₂Cl₂ (10 mL) and water (10 mL). The CH₂Cl₂ layer was washed with water (10 mL), dried (Na₂SO₄), and concentrated to give 3 as a solid (35 mg), which showed one spot (R_f 0.6) on silica gel TLC developed with 3% MeOH-CH₂Cl₂. The reaction mixture obtained from carbonylation of 19b (48 mg, 0.1 mmoL) followed by the above-mentioned dehydrocyanation in one pot was filtered through a Celite pad. The filtrate was subjected to silica gel TLC (3% MeOH-CH₂Cl₂), and a band with R_f 0.6 gave 3 (34 mg, 96%) as colorless crystals, mp 208-209 °C (MeOH).

13-Cyano-9,10-dimethoxy-5,6-dihydro-8H-2,3-(methylenedioxy)isoindolo[1,2-b][3]benzazepin-8-one (21a). A mixture of 20a (378 mg, 1.0 mmol), Bu₄NI (3.69 g, 10 mmol), and 50 wt % aqueous NaOH solution (5 mL) in CHCl₃ (50 mL) was refluxed under oxygen for 48 h. After cooling, Et₂O (100 mL) was added, and the mixture was washed with saturated brine (6 × 50 mL), dried (MgSO₄), and concentrated. The residue was chromatographed on a silica gel column with 3% MeOH-CH₂Cl₂ as eluents to give a crude product, which was crystallized from CH₂Cl₂—hexane to give **21a** (266 mg, 75%) as yellow crystals, mp 280–281 °C; IR (Nujol) $\nu_{\rm max}$ 2202, 1712, 1578, 1511 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 3.00 (dd, J = 5.3, 4.3 Hz, 2H), 3.97 (s, 3H), 4.08 (s, 3H), 3.90-4.20 (br m, 2H), 6.02 (s, 2H), 6.66 (s, 1H), 7.17 (d, J = 8.9 Hz, 1H), 7.36 (s, 1H), 8.57 (d, J = 8.9 Hz, 1H); EI-MS m/z (rel intensity) 376 (M⁺ 100), 361 (38), 347 (22). Anal. Calcd for C₂₁H₁₆N₂O₅: C, 67.02; H, 4.28; N, 7.44. Found: C, 66.88; H, 4.27; N, 7.51.

13-Carbamoyl-9,10-dimethoxy-5,6-dihydro-8H-2,3-(methylene-dioxy)isoindolo[1,2-b][3]benzazepin-8-one (21b). A solution of 21a (38 mg, 0.1 mmol), H_2O_2 (30 wt % solution in water, 0.34 mL), and Bu_4NF (1.0 M solution in THF, 3 mL) in DMSO (15 mL) was stirred at rt for 3 h. The resulting mixture was diluted with Et_2O (30 mL) and washed with saturated brine (6 × 300 mL), dried (MgSO₄), and concentrated to give a crude product, which was purified by preparative TLC on silica gel developed with 3% MeOH $-CH_2Cl_2$. A main band with $R_f0.5$ gave 21b (16 mg, 48%) as yellow crystals, mp 245-250 °C (EtOH); IR (CHCl₃) ν_{max}

3334, 2930, 1697, 1501 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.95 (t, J = 4.3 Hz, 2H), 3.54–3.66 (m, 2H), 3.87 (s, 3H), 3.97 (s, 3H), 5.98 (s, 2H), 6.15, 6.60 (each br s, each 1H), 6.63 (s, 1H), 7.01 (d, J = 8.6 Hz, 1H), 7.15 (s, 1H), 7.74 (d, J = 8.6 Hz, 1H); EI-MS m/z (rel intensity) 394 (M⁺, 100), 365 (19), 350 (40). Anal. Calcd for C₂₁H₁₈N₂O₆: C, 63.96; H, 4.60; N, 7.10. Found: C, 63.69; H, 4.58; N, 6.98.

2-(2-Bromo-3,4-dimethoxyphenyl)-1-cyano-3-methyl-7,8-(methylenedioxy)-1,2,4,5-tetrahydro-3*H*-3-benzazepine (19aMe): General Procedure. A mixture of 19a (86 mg, 0.20 mmol) and CH₃I (0.12 mL, 2.0 mmol) in THF (3 mL) was refluxed for 8 h. The resulting mixture was treated with 1.0 M aqueous K₂CO₃ solution (10 mL), extracted with CH_2Cl_2 (3×10 mL), washed with water (3×20 mL), dried (Na₂SO₄), and concentrated. The residue was crystallized from CH₂Cl₂-EtOH-hexane to give **19aMe** (71 mg, 95%) as colorless crystals, mp 212–213 °C (EtOH); IR (CHCl₃) $\nu_{\rm max}$ 2238, 1593, 1506 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.14 (s, 3H), 2.42 (t, J = 11.6 Hz, 1H), 2.80 (dd, J = 15.8, 4.0 Hz, 1H), $3.37 \, (dd, J = 12.9, 6.0 \, Hz, 1H), 3.49 \, (d, J = 1.3 \, Hz, 1H), 3.61 \, (dd, J = 1.3 \, Hz$ J=15.8, 10.6 Hz, 1H), 3.80 (d, J=1.3 Hz, 1H), 3.89 (s, 3H), 3.91 (s, 3Hz)3H), 5.96, 5.99 (each d, J = 1.3 Hz, each 1H), 6.66 (s, 1H), 6.67 (s, 1H), 6.99 (d, J = 8.9 Hz, 1H), 7.64 (d, J = 8.9 Hz, 1H); EI-MS m/z(rel intensity) 446 (M⁺, 99), 444 (M⁺, 100), 404 (29), 270 (51), 229 (58). Anal. Calcd for C₂₁H₂₁BrN₂O₄: C, 56.64; H, 4.75; Br, 17.94; N, 6.29. Found: C, 56.72; H, 4.79; Br, 17.78; N, 6.14.

1-Cyano-2-(2-iodo-3,4-dimethoxyphenyl)-3-methyl-7,8-(methylenedioxy)-1,2,4,5-tetrahydro-3*H*-3-benzazepine (19bMe): colorless crystals (96%), mp 213-215 °C (EtOH); IR (Nujol) $\nu_{\rm max}$ 2236, 1587, 1504 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.13 (s, 3H), 2.43 (t, J=11.6 Hz, 1H), 2.78 (dd, J=15.8, 6.9 Hz, 1H), 3.37 (ddd, J=12.9, 6.9, 1.3 Hz, 1H), 3.63 (dd, J=15.8, 9.9 Hz, 1H), 3.76 (s, 2H), 3.87 (s, 3H), 3.91 (s, 3H), 5.97, 5.98 (d, J=1.3 Hz, each 1H), 6.68 (s, 1H), 6.71 (s, 1H), 7.01 (d, J=8.6 Hz, 1H), 7.61 (d, J=8.6 Hz, 1H); EI-MS m/z (rel intensity) 492 (M $^+$, 100), 452 (31), 365 (17), 318 (36), 277 (50). Anal. Calcd for C₂₁H₂₁IN₂O₄: C, 51.23; H, 4.30; I, 25.78; N, 7.95. Found: C, 51.28; H, 4.28; I, 25.61; N, 8.00.

2-(2-Cyano-3,4-dimethoxyphenyl)-3-methyl-7,8-(methylenedioxy)-1,2,4,5-tetrahydro-3*H*-3-benzazepine (22b): General Procedure for Radical 1,4-Cyano Migration (Entries 1-6 and 11 in Table 3). A stirred solution of bromide 19aMe (44 mg, 0.10 mmol), AIBN (24 mg, 0.15 mmol), and Bu₃SnH (58 mg, 0.20 mmol) in dry toluene (6 mL) was refluxed for 12 h under argon (entry 6). The resulting mixture was concentrated, dissolved in CH₃CN (10 mL), washed with hexane (3 × 20 mL), and concentrated. The residue was subjected to preparative TLC on silica gel developed with 3% MeOH- CH_2Cl_2 to show two bands at R_f 0.5 and 0.35 in a 1:1 ratio. A mobile band with R_f 0.5 gave **22b** (10 mg, 30%) as a light brown oil; IR (CHCl₃) ν_{max} 2224, 1573, 1488, 1041 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.07 (s, 3H), 2.38–2.52 (m, 1H), 2.63 (d, J=14.9 Hz, 1H), 2.75 (dd, J=7.3, 14.9 Hz, 1H), 3.12-3.28 (m, 3H), 3.51 (d, J = 9.2, 1H), 3.90 (s, 3H), 4.03 (s, 3H), 5.90 (s, 2H), 6.58 (s, 1H), 6.63 (s, 1H), 7.11 (d, J = 8.9 Hz, 1H),7.24 (d, J = 8.9 Hz, 1H); EI-MS m/z (rel intensity) 366 (M⁺, 100), 351 (23), 310 (49), 217 (37). HR-MS calcd for C₂₁H₂₂N₂O₄ 366.1579, found 366.1574. A less mobile band with R_f 0.35 gave **24b**, mp 175–178 °C (95% EtOH), as colorless crystals (9 mg, 27%, R_f 0.35); IR (CHCl₃) $\nu_{\rm max}$ 2242, 1603, 1590, 1517 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 3H), 2.41 (t, J = 11.7 Hz, 1H), 2.84 (dd, J = 15.6, 6.8 Hz, 1H), 3.29 (br d, J = 15.6 Hz, 1H), 3.55 (br s, 1H), 3.55 (br t, J =12.7 Hz, 1H), 3.89, 3.90 (each s, each 3H), 3.93 (br s, 1H), 5.94, 5.96 (each d, J = 1.5 Hz, each 1H), 6.55, 6.58 (each s, each 1H), 6.83 (d, J=7.8 Hz, 1H), 6.85 (dd, J=7.8, 2.0 Hz, 1H), 7.10 (br s, 1.85 dt, 1.85 dt1H); 13 C NMR (100 MHz, CDCl₃) δ 34.5, 46.3, 46.3, 55.9, 55.9, 57.2, 71.3, 101.3, 109.9, 110.0, 110.3, 118.9, 119.8, 127.0, 134.1, 135.4, 146.1, 147.6, 148.8, 149.2; EI-MS m/z

(rel intensity) 366 (M⁺, 94), 192 (100), 178 (50), 151 (82). Anal. Calcd for C₂₁H₂₂N₂O₄: C, 68.84; H, 6.05; N, 7.65. Found: C, 68.76; H, 5.98; N, 7.42.

1-Cyano-2-(3.4-dimethoxyphenyl)-7,8-(methylenedioxy)-1,2, **3,4-tetrahydro-3***H***-3-benzazepine** (**24a**): colorless crystals (7 mg, 40%, R_f 0.2), mp 209–211 °C (95% EtOH), from **19b** (24 mg, 0.05 mmol) (entry 1); IR (CHCl₃) ν_{max} 3320, 2232, 1606, 1593, 1519 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.20 (br s, 1H), 2.74 (dd, J = 15.1, 5.4 Hz, 1H), 2.85 (t, J = 12.2 Hz, 1H), 3.43 (ddd, J = 15.1, 5.4 Hz, 1H), 3.44 (ddd, J = 15.1, 5.1 Hz, 1H), 3.44 (ddd, J = 15.1, 5.4 Hz, 1H), 3.45 (ddd, J = 15J = 12.2, 5.4, 2.0 Hz, 1H), 3.52 (ddd, J = 15.1, 12.2, 2.0 Hz, 1H), 3.89 (d, J=1.0 Hz, 1H), 3.93 (s, 3H and hiding 1H), 3.97 (s, 3H),5.95, 5.97 (each d, J = 1.5 Hz, each 1H), 6.59, 6.68 (each s, each 1H), 6.86 (d, J = 8.3 Hz, 1H), 6.99 (dd, J = 8.3, 2.0 Hz, 1H), 7.18(d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 37.5, 48.9, 49.0, 56.0, 56.0, 65.1, 101.4, 109.3, 110.4, 111.2, 111.3, 118.4, 118.5, 127.8, 135.2, 136.2, 146.0, 147.5, 149.0, 149.3; EI-MS m/z (rel intensity) 352 (M⁺, 57), 178 (100). Anal. Calcd for C₂₀H₂₀N₂O₄: C, 68.17; H, 5.72; N, 7.95. Found: C, 67.98; H, 5.54; N, 7.69.

2-(2-Cyano-3.4-dimethoxyphenyl)-7,8-(methylenedioxy)-4,5dihydro-3*H*-3-benzazepine (23a): brown oil (11 mg, 65%, R_f 0.2) from **19b** (25 mg, 0.05 mmol) (entry 2); IR (CHCl₃) 3318, 1625, 1500 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 3.06 (t, J =4.6 Hz, 2H), 3.93 (s, 3H), 4.02 (s, 3H), 3.80-4.30 (br m, 2H), 5.95 (s, 2H), 6.16 (s, 1H), 6.66 (s, 1H), 6.77 (s, 1H), 7.08 (d, J =8.3 Hz, 1H), 7.38 (d, J = 8.3 Hz, 1H); EI-MS m/z (rel intensity) $350~(M^+, 96), 335~(100), 319~(12).$ HRMS calcd for $C_{20}H_{18}N_2$ -O₄ 350.1266, found 350.1260.

2-(2-Cyano-3,4-dimethoxyphenyl)-7,8-(methylenedioxy)-1,2, 4,5-tetrahydro-3*H*-3-benzazepine (22a) and Its Hydrobromide (22a-HBr): General Procedure for Radical 1,4-Cyano Migration (Entries 7–9 in Table 3). A stirred solution of 19a (432 mg, 1.0 mmol), AIBN (82 mg, 0.50 mmol), and Bu₃SnH (0.54 mL, 2.0 mmol) in dry toluene (100 mL) was refluxed under Ar for 12 h (entry 9). The solvent was evaporated to give an oil, which showed a 4:0.2:1 ratio of 22a-HBr, 23a, and 24a in its ¹H NMR spectrum, and was dissolved in CH₃CN (30 mL), washed with hexane $(3 \times 60 \text{ mL})$, and concentrated. The residue was treated with CH₂Cl₂ to give **22a-HBr** (246 mg, 57%) as yellow crystals, mp 220–225 °C dec; IR (CHCl₃) $\nu_{\rm max}$ 3398, 2244, 1679, 1609 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.90 (dd, J = 15.1, 10.2 Hz, 1H), 3.07–3.20 (m, 3H), 3.35-3.41 (m, 1H), 3.96 (s, 3H), 4.15 (s, 3H), 4.63 (d, J=10.2 Hz, 1H), 5.61 (br d, J = 15.2 Hz, 1H), 5.96, 5.97 (each s,

each 1H), 6.73 (s, 1H), 6.74 (s, 1H), 7.23, 7.29 (AB type, J=8.3Hz, each 1H); EI-MS m/z (rel intensity) 352 $[(M - HBr)^+,$ 100], 335 (53), 191 (87), 94 (53). Anal. Calcd for C₂₀H₂₁BrN₂O₄: C, 55.44; H, 4.89; Br, 18.44; N, 6.47. Found: C, 55.20; H, 4.89; Br, 18.76; N, 6.37. A mixture of **22a-HBr** (43 mg, 0.1 mmol) and $K_2CO_3(138 \text{ mg}, 1 \text{ mmol})$ in MeOH (10 mL) was stirred at rt for 3 h. The resulting mixture was concentrated, and the residue was dissolved in CH₂Cl₂, washed with water (20 mL), dried (Na₂SO₄), and concentrated to give 22a (35 mg, >99%) as a pale brown oil; IR (CHCl₃) v_{max} 3398, 1678, 1630 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.84–3.09 (m, 5H), 3.92 (s, 3H), 4.04 (s, 3H), 4.39 (d, J = 9.9 Hz, 1H), 5.01 (br d, J = 12.2 Hz, 1H), 5.94, 5.95(each d, J = 1.3 Hz, each 1H), 6.72 (s, 1H), 6.75 (s, 1H), 7.10 (d, J = 8.3 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H); EI-MS m/z (rel intensity) 352 (M⁺, 100), 335 (26), 191 (96). HRMS calcd for C₂₀H₂₀N₂O₄ 352.1424, found 352.1423.

2-(2-Cyano-4,5-dimethoxyphenyl)-7,8-(methylenedioxy)-4,5dihydro-3H-3-benzazepine (23c): dark yellow oil (16 mg, 85%, R_f 0.2) from **19c** (22 mg, 0.05 mmol) (entry 11); IR (CHCl₃) 2228, 1626, 1613, 1497 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 3.08 (t, J = 4.6 Hz, 2H), 3.99 (s, 3H), 4.03 (s, 3H), 3.85 - 4.30 (br m, 2H), 5.96 (s, 2H), 6.14 (s, 1H), 6.67 (s, 1H), 6.80 (s, 1H), 7.11 (s, 1H), 7.14 (s, 1H); EI-MS m/z (rel intensity) 350 (M⁺, 100), 335 (99), 319 (16). HRMS calcd for C₂₀H₁₈N₂O₄ 350.1266, found 350.1289.

Preparation of 1 from 22a-HBr. 22a-HBr (78 mg, 0.2 mmol) was dissolved in a solution of KOH (112 mg, 2 mmol) in isoPrOH (5 mL) and H2O (1 mL) was refluxed for 24 h. The reaction mixture was acidified with 2 N HCl (10 mL) and extracted with CH_2Cl_2 (2×10 mL). The extracts were washed with saturated brine (10 mL), dried (Na₂SO₄), and concentrated. The residue was crystallized from CH2Cl2-hexane to give 1 (49 mg, 70%) as colorless crystals, mp 228-230 °C (MeOH). A one-pot two-step procedure starting with 19a (43 mg) gave 1 (20 mg) in 56% yield.

Supporting Information Available: Experimental procedures for the preparation of benzazepine 7a, and copies of ¹H NMR spectra of every compound except 5a and 5b and ¹³C NMR spectra of compounds 4a, 6b, 8, 16b, 18a, 18b, 18c, 19a, 19b, 24a, and 24b. This material is available free of charge via the Internet at http://pubs.acs.org.